BackgroundHigh risk human papillomaviruses (HR-HPV) have a causal role in cervical oncogenesis, and HIV-mediated immune suppression allows HR-HPV to persist. We studied whether vaginal microbiome community state types (CSTs) are associated with high-grade precancer and/or invasive cervical cancer (HSIL/ICC).MethodsThis was a cross-sectional study of adult women with cervical cancer screening (CCS) at the Jos University Teaching Hospital (JUTH) in Jos, Nigeria, between January 2020 and February 2022. Cervical swabs underwent HPV genotyping (Anyplex™ II HPV28). Cervico-vaginal lavage (CVL) sample was collected for 16 S rRNA gene amplicon sequencing. We used multivariable logistic regression modelling to assess associations between CSTs and other factors associated with HSIL/ICC.ResultsWe enrolled 155 eligible participants, 151 with microbiome data for this analysis. Women were median age 52 (IQR:43–58), 47.7% HIV positive, and 58.1% with HSIL/ICC. Of the 138 with HPV data, 40.6% were negative for HPV, 10.1% had low-risk HPV, 26.8% had single HR-HPV, and 22.5% had multiple HR-HPV types. The overall prevalence of any HR-HPV type (single and multiple) was 49.3%, with a higher proportion in women with HSIL/ICC (NILM 31.6%, LSIL 46.5%, HSIL 40.8%, and 81.5% ICC; p = 0.007). Women with HIV were more likely to have HSIL/ICC (70.3% vs. 29.7% among women without HIV). In crude and multivariable analysis CST was not associated with cervical pathology (CST-III aOR = 1.13, CST-IV aOR = 1.31). However, in the presence of HR-HPV CST-III (aOR = 6.7) and CST-IV (aOR = 3.6) showed positive association with HSIL/ICC.ConclusionVaginal microbiome CSTs were not significantly associated with HSIL/ICC. Our findings suggest however, that CST could be helpful in identifying women with HSIL/ICC and particularly those with HR-HPV. Characterization of CSTs using point-of-care molecular testing in women with HR-HPV should be studied as an approach to improve early detection and cervical cancer prevention. Future longitudinal research will improve our understanding of the temporal effect of non-optimal CST, HR-HPV, and other factors in cervical cancer development, prevention, and control.