Cholix toxin (Cholix) is a novel ADP-ribosylating cytotoxin produced by Vibrio cholerae, which utilizes eukaryotic elongation factor 2 as a substrate and acts by a mechanism similar to that of diphtheria toxin and Pseudomonas exotoxin A. First it was found that Cholix-treated HeLa cells exhibited caspase-dependent apoptosis, whereas intestinal cells such as Caco-2, HCT116, and RKO did not. Here we investigated Cholix-induced cell death signaling pathways in HeLa cells. Cholix-induced cytochrome c release into cytosol was initiated by specific conformational changes of pro-apoptotic Bak associated with Bax. Silencing of bak/bax genes or bak gene alone using siRNA significantly suppressed cytochrome c release and caspase-7 activation, but not activation of caspases-3 and -9. Although pretreatment with a caspase-8 inhibitor (Z-IETD-FMK) reduced Cholix-induced cytochrome c release and activation of caspases-3, -7, and -9, cytotoxicity was not decreased. Pretreatment with Z-YVAD-FMK, which inhibits caspase-1, -4, and -5, suppressed not only cytochrome c release, activation of caspase-3, -7, -8, or -9, and PARP cleavage, but also cytotoxicity, indicating that caspase-1, -4, and -5 activation is initiated at an early stage of Cholix-induced apoptosis and promotes caspase-8 activation. These results show that the inflammatory caspases (caspase-1, -4, and -5) and caspase-8 are responsible for both mitochondrial signals and other caspase activation. In conclusion, we showed that Cholix-induced caspase activation plays an essential role in generation of apoptotic signals, which are mediated by both mitochondria-dependent and -independent pathways.