Creation of charge transfer (CT) states in bulk heterojunction systems such as C60/polymer blends is an important intermediate step in the creation of carriers in organic photovoltaic systems. CT states generally have small oscillator strengths in linear optical absorption spectroscopy owing to limited spatial overlap of electron and hole wave functions in the CT excited state. Electroabsorption spectroscopy (EA) exploits changes in wave function character of CT states in response to static electric fields to enhance detection of CT states via nonlinear optical absorption spectroscopies. A 4 × 4 model Hamiltonian is used to derive splittings of even and odd Frenkel (FR) excited states and changes in wave function character of CT excited states in an external electric field. These are used to explain why FR and CT states yield EA lineshapes which are first and second derivatives of the linear optical absorption spectrum. The model is applied to ammonia-borane molecules and pairs of molecules with large and small B-N separations and CT or FR excited states. EA spectra are obtained from differences in linear optical absorption spectra in the presence or absence of a static electric field and from perturbative sum over states (SOS) configuration interaction singles χ(2) and χ(3) nonlinear susceptibility calculations. Good agreement is found between finite field (FF) and SOS methods at field strengths similar to those used in EA experiments. EA spectra of three C60/oligothiophene complexes are calculated using the SOS method combined with GW/BSE methods. For these C60/oligothiophene complexes, we find several CT states in a narrow energy range in which charge transfer from the thiophene HOMO level to several closely spaced C60 acceptor levels yields an EA signal around 10% of the signal from oligothiophene.
Read full abstract