ObjectiveThe present work was undertaken to study the genetic contribution to the start of Alzheimer's disease (AD) with amyloid and tau biomarkers in cognitively intact older identical twins.MethodsWe studied in 96 monozygotic twin‐pairs relationships between amyloid‐beta (Aβ) aggregation as measured by the Aβ1–42/1–40 ratio in cerebrospinal fluid (CSF; n = 126) and positron emission tomography (PET, n = 194), and CSF markers for Aβ production (beta‐secretase 1, Aβ1–40, and Aβ1–38) and CSF tau. Associations among markers were tested with generalized estimating equations including a random effect for twin status, adjusted for age, gender, and apolipoprotein E ε4 genotype. We used twin analyses to determine relative contributions of genetic and/or environmental factors to AD pathophysiological processes.ResultsTwenty‐seven individuals (14%) had an abnormal amyloid PET, and 14 twin‐pairs (15%) showed discordant amyloid PET scans. Within twin‐pairs, Aβ production markers and total‐tau (t‐tau) levels strongly correlated (r range = 0.73–0.86, all p < 0.0001), and Aβ aggregation markers and 181‐phosphorylated‐tau (p‐tau) levels correlated moderately strongly (r range = 0.50–0.64, all p < 0.0001). Cross‐twin cross‐trait analysis showed that Aβ1–38 in one twin correlated with Aβ1–42/1–40 ratios, and t‐tau and p‐tau levels in their cotwins (r range = −0.28 to 0.58, all p < .007). Within‐pair differences in Aβ production markers related to differences in tau levels (r range = 0.49–0.61, all p < 0.0001). Twin discordance analyses suggest that Aβ production and tau levels show coordinated increases in very early AD.InterpretationOur results suggest a substantial genetic/shared environmental background contributes to both Aβ and tau increases, suggesting that modulation of environmental risk factors may aid in delaying the onset of AD pathophysiological processes. ANN NEUROL 2021;89:987–1000