This study aims to investigate the low-velocity impact behavior of curved composite plates commonly employed in aviation fuselage and wing surfaces using numerical methods. Layered plates fabricated from E-Glass Epoxy were reinforced with various types of stiffeners and subjected to impacts whit a 12 mm diameter impactor at a velocity of 2.5 m/s. The time-dependent variation of force and displacement on the stiffened curved plates resulting from the impact was analyzed. Furthermore, the temporal variation in the amount of energy absorbed by the plate was observed. The results indicate that plates reinforced with I, T, and blade-type stiffeners absorbed 35.78%, 38.11%, and 37.78% of the impact energy, respectively. Among these, plates with T-type reinforcements exhibited the least post-impact deformation. Particularly noteworthy is the permanent deformation of 3.7 mm experienced by the plate reinforced with blade-type stiffeners.