Hemocytes are invertebrate immune cells that are similar to blood cells in vertebrates and play a crucial role in innate immunity. Previous work has found that mature circulating hemocytes lack the ability to proliferate. However, recent single-cell RNA sequencing and functional studies in invertebrate have challenged this view. Here, we report that bacteria induced hemocytes proliferation in the Chinese mitten crab, Eriocheir sinensis. Flow cytometry was used to collect non-proliferating and proliferating hemocytes populations, while the expression of EsCyclin E was highly expressed in proliferating hemocytes, but the expression of EsCsn5 was significantly suppressed in proliferating hemocytes. Subsequent studies have found EsCsn5 distributed in two fractions include holo-complex and monomeric form, whereas knockdown of EsCsn5has little impact on the amount of the holo-complex. EsCsn5 was widely expressed in different crab tissues, while its expression was significantly reduced upon bacterial infection. Crab hemocytes showed significantly enhanced proliferation when EsCsn5 was genetically knocked down, suggesting a critical role for CSN5 in the negative regulation of crab hemocyte proliferation. Moreover, EsCSN5 but not the EsCSN8 was demonstrated to negatively regulate the early G1 phase of the cell cycle by controlling the degradation of EsCyclin E through ubiquitination steps, rather than affecting its transcription. Furthermore, in the EsCyclin E-suppressed crab there was a significantly reduced survival rate and an up-regulated hemolymph bacterial concentration. Taken together, this study provides evidence demonstrating that invertebrate hemocytes down-regulate the expression of EsCsn5 upon bacterial challenge, thus promoting proliferation in an EsCyclin E-dependent manner in order to protect the crab from infection.
Read full abstract