E-cadherin is a transmembrane protein and central component of adherens junctions (AJs). The extracellular domain of E-cadherin forms homotypic interactions with E-cadherin on adjacent cells, facilitating the formation of cell-cell adhesions, known as AJs, between neighbouring cells. The intracellular domain of E-cadherin interacts with α-, β- and p120-catenins, linking the AJs to the actin cytoskeleton. Functional AJs maintain epithelial tissue identity and integrity. Transcriptional downregulation of E-cadherin is the first step in epithelial-to-mesenchymal transition (EMT), a process essential in development and tissue repair, which, in breast cancer, can contribute to tumour progression and metastasis. In addition, loss-of-function mutations in E-cadherin are a defining feature of invasive lobular breast cancer (also known as invasive lobular carcinoma (ILC)), the second most common histological subtype of breast cancer. ILC displays a discohesive, single-file invasive growth pattern due to the loss of functional AJs. Despite being so prevalent, until recently there has been limited ILC-focused research and historically ILC patients have often been excluded from clinical trials. Despite displaying a number of good prognostic indicators, such as low grade and high rates of estrogen receptor positivity, ILC patients tend to have similar or poorer outcomes relative to the most common subtype of breast cancer, invasive ductal carcinoma (IDC). In ILC, E-cadherin loss promotes hyperactivation of growth factor receptors, in particular insulin-like growth factor 1 receptor, anoikis resistance and synthetic lethality with ROS1 inhibition. These features introduce clinical vulnerabilities that could potentially be exploited to improve outcomes for ILC patients, for whom there are currently limited tailored treatments available.
Read full abstract