Duchenne and Becker muscular dystrophies (DMD/BMD) are X-linked recessive neuromuscular disorders characterized by progressive irreversible muscle weakness and atrophy that affect both skeletal and cardiac muscles. DMD/BMD is caused by mutations in the Dystrophin gene on the X chromosome, leading to the absence of the essential muscle protein Dystrophin in DMD. In BMD, Dystrophin is partially functioning with a shorter protein product. Recent advances in molecular therapies for DMD require precise genetic diagnoses because most therapeutic strategies are mutation-specific. Hence, early diagnosis is crucial to allow appropriate planning for patient care and treatment. In this study, data from DMD/BMD patients who attended the Kuwait Medical Genetic Center during the last 20 years was retrieved from a Kuwait neuromuscular registry and analyzed. We combined multiplex PCR and multiplex ligation-dependent probe amplification (MLPA) with Sanger sequencing to detect Dystrophin gene mutations. A total of 35 different large rearrangements, 2 deletion-insertions (Indels) and 4 substitution mutations were identified in the 68 unrelated families. The deletion and duplication rates were 66.2% and 4.4%, respectively. The analyzed data from our registry revealed that 11 (16%) of the DMD families will benefit from newly introduced therapies (Ataluren and exon 51 skipping). At the time of submitting this paper, two cases have already enrolled in Ataluren (Tranlsarna™) therapy, and one case has been enrolled in exon 51 skipping therapy.
Read full abstract