OBJECTIVE Chronic frontal hemodynamic disturbances are associated with executive dysfunction in adult patients with moyamoya disease (MMD). However, the impact of surgical revascularization on executive dysfunction and its underlying mechanism remains unclear. The aim of the present study was to examine the postoperative radiological correlates of cognitive improvement and thereby explore its underlying mechanism. METHODS Fourteen patients who met the inclusion criteria were identified at Huashan Hospital, were operated on, and were successfully followed up for 6 months. Postoperative changes in cortical perfusion and regional amplitude of low-frequency fluctuations (ALFF) were examined by SPECT and resting-state functional MRI, respectively. Executive function was evaluated by 2 tests (Trail Making Test Part B and the summation of executive subtests of Memory and Executive Screening [MES-EX]). Follow-up neuropsychological outcomes were then correlated with radiological changes to identify nodes functioning as leading contributors to postoperative executive outcomes. RESULTS All patients underwent successful unilateral bypass procedures, with some operations performed on the left side and some on the right side. At the 6-month follow-up, the baseline and follow-up test scores for the different sides did not differ significantly. The group with good collaterals (Matsushima Grade A, 9 patients) exhibited significantly increased postoperative perfusion (change in [△] hemodynamics) in bilateral frontal (left, p = 0.009; right, p = 0.003) and left parietal lobe (p = 0.014). The Spearman's correlation test suggested that only the right frontal lobe exhibited significant positive postoperative radiological correlates with cognitive performance (△MES-EX vs △hemodynamics, r = 0.620, p = 0.018; △MES-EX vs △ALFF, r = 0.676, p = 0.008; △hemodynamics vs △ALFF, r = 0.547, p = 0.043). Subsequent regional ALFF analysis revealed that the right dorsolateral prefrontal cortex (DLPFC) was the only node in the responsible hemisphere to exhibit significant postoperative changes. CONCLUSIONS The results not only advance our understanding of pathological interactions of postoperative executive performance in adult MMD, but also indicate that the right DLPFC amplitude might be a quantitative predictor of postoperative executive control improvement.
Read full abstract