The relevance of the paper is due to the difficulties of oral interaction between people with speech disorders and normotypic interlocutors as well as the low quality of abnormal speech recognition by standard speech recognition systems and the inability to create a system capable of processing any speech disorders. In this regard, this article is aimed at developing a method for automatic recognition of dysarthric speech using a pre-trained neural network for recognizing phonemes and hidden Markov models for converting phonemes into text and subsequent correction of recognition results using a search in the space of acceptable words of the nearest Levenshtein word and a dynamic algorithm for splitting the output of the model into separate words. The main advantage of using hidden Markov models in comparison with neural networks is the small size of the training data set collected individually for each user, as well as the ease of training the model further in case of progressive speech disorders. The data set for model training is described, and recommendations for collecting and marking data for model training are given. The effectiveness of the proposed method is tested on an individual data set recorded by a person with dysarthria; the recognition quality is compared with neural network models trained on the data set used. The materials of the article are of practical value for creating an augmented communication system for people with speech disorders. Keywords: hidden Markov models, dysarthria, automatic speech recognition, phonemes recognition, phoneme correction. For citation: Bredikhin B.A., Antor M.H., Khlebnikov N.A., Melnikov A.V., Bachurin M.V. Dysarthria speech recognition by phonemes using hidden Markov models. Modeling, Optimization and Information Technology. 2024;12(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1471 DOI: 10.26102/2310-6018/2024.44.1.002 Распознавание дизартричной речи по фонемам с использованием скрытых марковских моделей Б.А. Бредихин1,2*, М.Х. Антор1, Н.А. Хлебников1, А.В. Мельников1, М.В. Бачурин1 1Уральский федеральный университет, Екатеринбург, Российская Федерация 2ООО «Сайберлимфа», Сколково, Российская Федерация Резюме. Актуальность работы обусловлена сложностями устного взаимодействия людей с нарушениями речи с нормотипичными собеседниками, а также низким качеством распознавания аномальной речи стандартными системами распознавания речи и невозможностью создания системы, способной обработать любые нарушения речи. В связи с этим данная статья направлена на разработку метода автоматического распознавания дизартричной речи с применением предобученной нейронной сети для распознавания фонем и скрытых марковских моделей для преобразования фонем в текст и последующей коррекции результатов распознавания с помощью поиска в пространстве допустимых слов ближайшего по расстоянию Левенштейна слова и динамического алгоритма разбиения выхода модели на отдельные слова. Основное преимущество использования скрытых марковских моделей по сравнению с нейронными сетями заключается в малом размере обучающего набора данных, собираемого индивидуально для каждого пользователя, а также в простоте дообучения модели в случае прогрессирующих нарушений речи. Описывается набор данных для обучения модели, и даются рекомендации по сбору и разметке данных для обучения модели. Эффективность предложенного метода проверяется на индивидуальном наборе данных, записанных человеком с дизартрией; качество распознавания сравнивается с нейросетевыми моделями, обученными на используемом наборе данных. Материалы статьи представляют практическую ценность для создания средства дополненной коммуникации для людей с нарушениями речи. Актуальность работы обусловлена сложностями устного взаимодействия людей с нарушениями речи с нормотипичными собеседниками, а также низким качеством распознавания аномальной речи стандартными системами распознавания речи и невозможностью создания системы, способной обработать любые нарушения речи. В связи с этим данная статья направлена на разработку метода автоматического распознавания дизартричной речи с применением предобученной нейронной сети для распознавания фонем и скрытых марковских моделей для преобразования фонем в текст и последующей коррекции результатов распознавания с помощью поиска в пространстве допустимых слов ближайшего по расстоянию Левенштейна слова и динамического алгоритма разбиения выхода модели на отдельные слова. Основное преимущество использования скрытых марковских моделей по сравнению с нейронными сетями заключается в малом размере обучающего набора данных, собираемого индивидуально для каждого пользователя, а также в простоте дообучения модели в случае прогрессирующих нарушений речи. Описывается набор данных для обучения модели, и даются рекомендации по сбору и разметке данных для обучения модели. Эффективность предложенного метода проверяется на индивидуальном наборе данных, записанных человеком с дизартрией; качество распознавания сравнивается с нейросетевыми моделями, обученными на используемом наборе данных. Материалы статьи представляют практическую ценность для создания средства дополненной коммуникации для людей с нарушениями речи.
Read full abstract