In this research, we found that the local opening of base pairs induces the formation of kinks which facilitates the bending of double helix. The conformational properties of DNA can be mapped onto the Heisenberg spin system and denaturation occurs through quantum phase transition (QPT) induced by a quench when the temperature effect is incorporated through the quench time. The nonequilibrium effect in QPT introduced through the quench generate defects like kinks end antikinks, the density of which depends on the quench time and hence on temperature. It is here argued that when we transcribe this result in the rod –like-chain (RLC) model of DNA, these defects correspond to bends. The dynamical formation of these bends during local denaturation associated with transcription hinders free rotation of the transcribed DNA and helps the torsional stress to propagate down the DNA. This explains the observed large torsional stress near the point of transcription. We have estimated the bend length which is found to be in good agreement with experiments.
Read full abstract