In order to solve the many-boson Schr\"odinger equation we utilize the multiconfigurational time-dependent Hartree method for bosons (MCTDHB). To be able to attack larger systems and/or to propagate the solution for longer times, we implement a parallel version of the MCTDHB method, thereby realizing the recently proposed [Streltsov et al., Phys. Rev. A 81, 022124 (2010)] idea on how to construct efficiently the result of the action of the Hamiltonian on a bosonic state vector. As an illustrative example of its own interest, we study the real-space dynamics of repulsive bosonic systems made of $N=12$, 51, and 3003 bosons in triple-well periodic potentials. The ground state of this system is threefold fragmented. By suddenly strongly distorting the trap potential, the system performs complex many-body quantum dynamics. At long times it reveals a tendency to an oscillatory behavior around a threefold fragmented state. These oscillations are strongly suppressed and damped by quantum depletions. In spite of the richness of the observed dynamics, the three time-adaptive orbitals of MCTDHB($M=3$) are capable of describing the many-boson quantum dynamics of the system for short and intermediate times. For longer times, however, more self-consistent time-adaptive orbitals are needed to correctly describe the nonequilibrium many-body physics. The convergence of the MCTDHB($M$) method with the number $M$ of self-consistent time-dependent orbitals used is demonstrated.