We present a computer simulation of the real-time detection of ultrafast electronic decay dynamics in polyatomic molecules with femtosecond laser pulses. The intramolecular non-Born-Oppenheimer quantum dynamics is treated numerically exactly for a two-state three-mode vibronic coupling model representing the conically intersecting S1 and S2 excited states of pyrazine. The pump–probe signal is evaluated in lowest order perturbation theory with respect to the radiation–matter interaction by numerical integration over the pump and probe pulses. We discuss in some detail the dependence of the pump–probe signal on the properties of the laser pulses (frequencies and pulse durations). The calculations predict a dramatic (∼12 000 cm−1) and ultrafast (∼20 fs) red shift of the stimulated-emission signal as well as distinctive quantum beats in the pump–probe signal as a function of the delay time. Both effects are very pronounced and should therefore be relatively easily detectable experimentally. They are expected to be generic features of ultrafast internal-conversion processes in polyatomic molecules.