We use Monte Carlo simulation based on the bond fluctuation model to investigate how adding ≈4.92% protein-like copolymer (PLC) to an immiscible binary polymer blend affects the dynamics of phase separation. PLCs slow down effectively the process of phase separation in binary blends by migrating to the biphasic interface between the immiscible homopolymers, thereby reducing the interfacial tension. The ability of PLCs to retard effectively the process of phase separation depends sensitively on the interaction energy between the PLCs and homopolymers and the PLC chain length. PLCs compatibilize the binary blend more effectively with increasing attractive interaction between the PLC blocks and homopolymers. Nominal improvement in compatibilization of the binary blend is achieved with increasing PLC chain length. The growth of phase-separated domains follows a dynamical scaling law for both the binary blend and PLC compatibilized ternary blend in the late stages of phase separation. The universal scaling functions are nearly independent of the interaction energy and PLC chain length. Thus, the phase-separated domains grow with dynamical self-similarity irrespective of the type of PLC added to the binary blend, although the type of PLC significantly alters the growth rate of the phase-separated domains.
Read full abstract