Many modern real-time systems (RTSs) are required to provide both fault tolerance and energy-efficiency in addition to their main objective to compute and deliver correct results within a specified period of time. Dynamic voltage and frequency scaling (DVFS) technique is known as one of the most effective low-energy technique for RTSs. However, most existing DVFS techniques only focus on minimizing energy consumption without taking the fault-tolerant capability of RTS into account. To solve this problem, in this paper we developed a new heuristic-based fault-tolerant dynamic voltage and frequency scaling (FT-DVFS) algorithm. The goal of the proposed algorithm is to find frequencies at which each task should be executed such that the energy consumed by the set of task is minimized. Beside energy minimization FT-DVFS algorithm has to meet all real-time requirements of individual tasks and to keep the system’s ability to tolerate transient faults via task re-execution. The simulation results show that the proposed approach could save a significant amount of energy while preserving the required level of system’s fault-tolerance capability when compared with the solutions obtained without energy-minimization.
Read full abstract