This article presents two new models of Dynamic User Equilibrium that are particularly suited for ITS applications, where the evolution of vehicle flows and travel times must be simulated on large road networks, possibly in real-time. The key feature of the proposed models is the detail representation of the main congestion phenomena occurring at nodes of urban networks, such as vehicle queues and their spillback, as well as flow conflicts in mergins and diversions. Compared to the simple word of static assignment, where only the congestion along the arc is typically reproduced through a separable relation between vehicle flow and travel time, this type of DTA models are much more complex, as the above relation becomes non-separable, both in time and space.Traffic simulation is here attained through a macroscopic flow model, that extends the theory of kinematic waves to urban networks and non-linear fundamental diagrams: the General Link Transmission Model. The sub-models of the GLTM, namely the Node Intersection Model, the Forward Propagation Model of vehicles and the Backward Propagation Model of spaces, can be combined in two different ways to produce arc travel times starting from turn flows. The first approach is to consider short time intervals of a few seconds and process all nodes for each temporal layer in chronological order. The second approach allows to consider long time intervals of a few minutes and for each sub-model requires to process the whole temporal profile of involved variables. The two resulting DTA models are here analyzed and compared with the aim of identifying their possible use cases.A rigorous mathematical formulation is out of the scope of this paper, as well as a detailed explanation of the solution algorithm.The dynamic equilibrium is anyhow sought through a new method based on Gradient Projection, which is capable to solve both proposed models with any desired precision in a reasonable number of iterations. Its fast convergence is essential to show that the two proposed models for network congestion actually converge at equilibrium to nearly identical solutions in terms of arc flows and travel times, despite their two diametrical approaches wrt the dynamic nature of the problem, as shown in the numerical tests presented here.