In this study, a dynamic constitutive model for woven-carbon-fiber-reinforced plastics (CFRP) is formulated by combining dynamic tensile test data and fitting curves and incorporating variation rules established for the modulus of elasticity, strength, and fracture strain with respect to the strain rate. The dynamic constitutive model is then implemented with finite element software. The accuracy and applicability of the dynamic constitutive model are evaluated by comparing the numerically predicted load–displacement curves and strain distributions with the test data. The stress distribution, failure factor, modulus, and strength of the material under dynamic tension are also explored. The results show that the response simulated with the dynamic constitutive model is in good agreement with the experimental results. The strain is uniformly distributed during the elastic phase compared with the DIC strain field. Subsequently, it becomes nonuniform when stress exceeds 600 MPa. Then, the brittle fracture occurs. With the increase in the strain rate, the input modulus decreased, and the tensile strength increased. When the displacement was 0.13 mm, the simulation model was damaged at a low strain rate, and the stress value was 837.8 MPa. When it reached the high strain rate of 800 s−1, no failure occurred, and the maximum stress value was 432.5 MPa. For the same specimen, the strain rate was the smallest on both clamped ends, and the modulus and strength were large at the ends and small in the middle. The fitting curve derived from the test data was completely input into the dynamic constitutive model to better capture the dynamic change in the material properties.
Read full abstract