Social information is predicted to enhance the quality of animals’ migratory decisions in dynamic ecosystems, but the relative benefits of social information in the long-range movements of marine megafauna are unknown. In particular, whether and how migrants use nonlocal information gained through social communication at the large spatial scale of oceanic ecosystems remains unclear. Here we test hypotheses about the cues underlying timing of blue whales’ breeding migration in the Northeast Pacific via individual-based models parameterized by empirical behavioral data. Comparing emergent patterns from individual-based models to individual and population-level empirical metrics of migration timing, we find that individual whales likely rely on both personal and social sources of information about forage availability in deciding when to depart from their vast and dynamic foraging habitat and initiate breeding migration. Empirical patterns of migratory phenology can only be reproduced by models in which individuals use long-distance social information about conspecifics’ behavioral state, which is known to be encoded in the patterning of their widely propagating songs. Further, social communication improves pre-migration seasonal foraging performance by over 60% relative to asocial movement mechanisms. Our results suggest that long-range communication enhances the perceptual ranges of migrating whales beyond that of any individual, resulting in increased foraging performance and more collective migration timing. These findings indicate the value of nonlocal social information in an oceanic migrant and suggest the importance of long-distance acoustic communication in the collective migration of wide-ranging marine megafauna.