Reflection electron microscopy (REM), reflection high energy electron diffraction (RHEED), reflection electron energy-loss spectroscopy (REELS), and energy dispersion x-ray spectroscopy (EDX) have been comprehensively used as a technique, termed reflection high resolution analytical electron microscopy (RHRAEM), for studying the structures of the bulk crystal GaAs (110) surfaces by transmission electron microscopy (TEM). The simultaneous observations of surface topography imaging, the surface diffraction mechanism with RHEED, surface atomic inner-shell excitations with REELS, and surface chemical compositions with EDX provide a systematic description of the atomic structure and chemical structure of the surface. The surface channelling effect has been observed in GaAs (110) with REELS, which may provide a basis for localizing surface foreign atoms with ALCHEMI. The theoretically predicted surface-resonance wave has been observed directly in the RHEED pattern; the surface-captured Bragg reflection wave have been identified. It is shown that surface chemical compositions can be determined by analyzing the EDX spectra obtained in the REM case. Finally, the surface monolayer resonance characteristic of the RHRAEM has been confirmed by calculations with dynamical RHEED theory.