Grain refinement is attracting attention as a strengthening method which does not depend on the alloying elements added to steels. Many reports have described the manufacturing methods and mechanical properties of ultra-fine grained steels. In ultra-fine grained steels, it is well known that yielding stress drastically increases in accordance with the Hall-Petch relationship, while uniform elongation significantly decreases. These tendencies imply that grain size affects not only yielding but also work-hardening behavior. However, the influence of grain size on work-hardening behavior has not been clearly understood. Therefore, in this study, we investigated the work-hardening behavior during tensile deformation of 12Cr stainless steel with various grain sizes. Grain refining was conducted by cold-rolling of annealed and quenched steel specimens, followed by recrystallization annealing. The grain size of the specimens decreased as the cold-rolling reduction rate increased. The minimum grain size obtained by this method was approximately 5 μm. With decreasing grain size, 0.2% proof stress increased and the strain which reached the plastic instability condition decreased. In the session, we report the dislocation accumulation behavior estimated by grain hardness and XRD and the dynamic recovery behavior assessed by the Kocks-Mecking model.
Read full abstract