The aim of this study was to compare the accuracy of dental implant placement in a single tooth gap, including the postextraction site and healed site, using a task-autonomous robotic system and a dynamic navigation system. Forty partially edentulous models requiring both immediate and conventional implant placement were randomly divided into a robotic system group and a navigation system group. The coronal, apical, and angular deviations of the implants were measured and assessed between the groups. The deviations in immediate implant placement were compared between the robotic system and dynamic navigation system groups, showing a mean (±SD) coronal deviation of 0.86 ± 0.36 versus 0.70 ± 0.21 mm (p = .101), a mean apical deviation of 0.77 ± 0.34 versus 0.95 ± 0.38 mm (p = .127), and a mean angular deviation of 1.94 ± 0.66° versus 3.44 ± 1.38° (p < .001). At the healed site, significantly smaller coronal deviation (0.46 ± 0.29 vs. 0.70 ± 0.30 mm, p = .005), apical deviation (0.56 ± 0.30 vs. 0.85 ± 0.25 mm, p < .001), and angular deviation (1.36 ± 0.54 vs. 1.80 ± 0.70 mm, p = .034) were found in the robotic system group than in the dynamic navigation group. The position in both immediate and conventional implant placement was more precise with the task-autonomous robotic system than with the dynamic navigation system. Its performance in actual clinical applications should be confirmed in further trials.
Read full abstract