ABSTRACTIt is reasonable to assume that the changing of the optimization environment is smooth when considering a dynamic multi-objective optimization problem. Learning techniques are widely used to explore the dependence structure to facilitate population re-initialization in evolutionary search paradigms. The aim of the learning techniques is to discover knowledge from history information, thereby to track the movement of the optimal front quickly through good initialization when a change occurs. In this article, a new learning strategy is proposed, where the main ideas are (1) to use mutual information to identify the relationship between previously found approximated solutions; (2) to use a stable matching mechanism strategy to associate previously found optimal solutions bijectively; and (3) to re-initialize the new population based on a kinematics model. Controlled experiments were carried out systematically on some widely used test problems. Comparison against several state-of-the-art dynamic multi-objective evolutionary algorithms showed comparable performance in favour of the developed algorithm.
Read full abstract