The objective of disassembly lines is to disassemble End-of-Life products in a remanufacturing field. The disassembly line balancing problem (DLBP) considers how to allocate disassembly operations to operators on the disassembly line to optimize predetermined goals, such as cycle time. In practice, various environmental uncertainties (e.g., uncertain product quality) exist in the disassembly line. These uncertainties entail DLBP essentially a dynamic multi-objective optimization problem. This study presents a dynamic DLBP (D-DLB) to model the effect of environmental uncertainties on the assignment of disassembly operations. Furthermore, a prediction-based dynamic optimization algorithm, termed domain generalization-based dynamic multi-objective evolutionary algorithm (DG-DMOEA), combining meta-learning with multi-objective optimization, is proposed to solve D-DLB. In DG-DMOEA, a meta-learning algorithm is employed to learn the parameters of a solution-generative model from the Pareto-optimal sets in all historical environments. Subsequently, the solution-generative model is applied to generate a high-quality initial population that can assist multi-objective optimization algorithms in finding the Pareto-optimal set in the new environment faster. Since no information in the new environment is required, learning can begin before the new environment arrives, significantly reducing computational time. Moreover, different solution-generative models can be designed for different DMOPs. Therefore, DG-DMOEA can thoroughly combine real-world problem properties to represent knowledge. The experimental results show that, compared with state-of-the-art methods, DG-DMOEA can considerably improve the quality of solutions and significantly enhance the ability to react quickly to environmental changes.
Read full abstract