A new methodology using a direct method for obtaining the best found trajectory planning and maximum dynamic load-carrying capacity (DLCC) is presented for a 5-degree of freedom (DOF) hybrid robot manipulator. A nonlinear constrained multiobjective optimization problem is formulated with four objective functions, namely, travel time, total energy involved in the motion, joint jerks, and joint acceleration. The vector of decision variables is defined by the sequence of the time-interval lengths associated with each two consecutive via-points on the desired trajectory of the 5-DOF robot generalized coordinates. Then this vector of decision variables is computed in order to minimize the cost function (which is the weighted sum of these four objective functions) subject to constraints on joint positions, velocities, acceleration, jerks, forces/torques, and payload mass. Two separate approaches are proposed to deal with the trajectory planning problem and the maximum DLCC calculation for the 5-DOF robot manipulator using an evolutionary optimization technique. The adopted evolutionary algorithm is the elitist nondominated sorting genetic algorithm (NSGA-II). A numerical application is performed for obtaining best found solutions of trajectory planning and maximum DLCC calculation for the 5-DOF hybrid robot manipulator.