Hydroponics combined with fugacity model was employed to investigate the kinetics of uptake, accumulation, and metabolism of organophosphate esters (OPEs) by japonica rice. The time-dependent process for uptake and accumulation of 5 OPEs and their diester-metabolites in both rice root and shoot fitted well with the pseudo-first-order kinetic model. The peak OPE accumulations in rice root and shoot were significantly positively or negatively correlated with their octanol-water partition coefficient (logKow) respectively, but not for their apparent accumulation rates. Root concentration factors (RCFs) and root-to-shoot translocation factors (TFs) of OPEs were found to be positively and negatively correlated with their logKow, respectively. Triphenyl phosphate with benzene ring substituents showed the highest RCF, but the lowest TF, because of its high potential for root adsorption due to the π electron-rich structures. Sterilized root exudates can hinder the root adsorption and absorption of OPEs from solution probably through competitive adsorption of OPEs with root surface. The first-hand transport and metabolism rates were also obtained by generating these rates to fit the dynamic fugacity model with the measurement values. The simulation indicated that the kinetics of OPE accumulation in rice plants may be controlled by multiple processes and physicochemical properties besides Kow.
Read full abstract