Although hydrophilic modification of the membrane surface is widely adopted, polymeric membranes still suffer from irreversible fouling caused by hydrophilic components in surface water. Here, an ultrathin hydrogel layer (40 nm) with hydrophilic-hydrophobic textures was in situ grown onto the polysulfone ultrafiltration membrane surface using an organic-radical-initiated interfacial polymerization technique. The interfacial polymerization of hydrophilic and hydrophobic monomers ensured the molecular-scale distribution of hydrophilic and hydrophobic nanodomains on the membrane surface. These nanodomains, with their molecular lengths, facilitated dynamic repulsion interactions between the uniformly textured surface and foulant components with different degrees of hydrophilicity. Chemical force characterization confirmed that the adhesion force between the hydrophilic-hydrophobic textured membrane surface and foulants (dodecane, bovine serum albumin, and humic acid) was greatly reduced. Dynamic filtration experiments showed that a hydrophilic-hydrophobic textured membrane always possessed the largest water flux and the best antifouling performance. Furthermore, the foulant coverage ratio on the membrane surface was first evaluated by measuring changes in surface streaming potentials, which demonstrated a 69% reduction in the amount of foulant adhering to the hydrophilic-hydrophobic textured membrane surface. Therefore, the construction of hydrophilic-hydrophobic nanodomains on the membrane surface provides a promising strategy for alleviating membrane fouling caused by both hydrophobic and hydrophilic components during ultralow pressurized ultrafiltration processes.
Read full abstract