To investigate whether kinetic heterogeneity in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) improves the specificity of breast cancer (BC) diagnosis. The DCE-MRI data of patients with benign breast tumours and BC from June 2020 to July 2022 were retrospectively evaluated. MATLAB and SPM were used to determine six major kinetic parameters: peak, enhancement volume, heterogeneity, as well as persistent, plateau, and washout proportions. Continuous variables were compared using the Student's t-test or Mann-Whitney U tests, and categorical variables were compared using the chi-square or Fisher's exact tests. Receiver operating characteristic curves were plotted. The intraclass correlation coefficient (ICC) was used to evaluate agreement between the two observers. Multivariate logistic regression analysis was conducted to calculate the odds ratios (ORs) with 95% confidence intervals (CIs) for the association between benign and malignant breast tumours. In total, 147 patients (mean age, 47 years old) were included in the study, 76 of whom had BC. Data analysis by the two observers showed good consistency in the peak, enhancement volume, persistent proportion, plateau proportion, washout proportion, and heterogeneity, with ICCs of 0.865, 0.988, 0.906, 0.940, 0.740, and 0.867, respectively (p<0.001). In the DCE kinetic analysis, differences in all the six kinetic parameters were statistically significant (p<0.05). The area under the curve for heterogeneity was 0.92 (95% CI:0.88,0.97), and the sensitivity and specificity were 0.895 and 0.845, respectively. Multivariate logistic regression analysis showed that heterogeneity was an independent predictor of BC comparedtobenign breast tumours (OR=2.020; 95% CI:1.316, 3.100; p=0.001). The kinetic heterogeneity of DCE-MRI can effectively distinguish between benign and malignant breast tumours and improve the specificity of BC diagnosis.
Read full abstract