Geomagnetically Induced Currents (GICs) are a manifestation of space weather events at ground level. GICs have the potential to cause power failures in electric grids. The GIC index is a proxy of the ground geoelectric field derived solely from geomagnetic field data. Information theory can be used to shed light on the dynamics of complex systems, such as the coupled solar wind–magnetosphere–ionosphere–ground system. We performed block entropy analysis of the GIC activity indices at middle-latitude European observatories around the St. Patrick’s Day March 2015 intense magnetic storm and Mother’s Day (or Gannon) May 2024 superintense storm. We found that the GIC index values were generally higher for the May 2024 storm, indicating elevated risk levels. Furthermore, the entropy values of the SYM-H and GIC indices were higher in the time interval before the storms than during the storms, indicating transition from a system with lower organization to one with higher organization. These findings, including the temporal dynamics of the entropy and GIC indices, highlight the potential of this method to reveal pre-storm susceptibility and relaxation processes. This study not only adds to the knowledge of geomagnetic disturbances but also provides valuable practical implications for space weather forecasting and geospatial risk assessment.
Read full abstract