The allocation of spectrum resources efficiently and equitably in dynamic cognitive vehicular networks is more challenging than static cognitive networks. Currently, most spectrum allocation algorithms are on the basis of a fixed network topology, thereby ignoring the mobility of cognitive vehicular users (CVUs), timeliness of licensed channels, and uncertainty of spectrum sensing in complex environments. In this paper, a cognitive vehicular network spectrum allocation model for maximizing the network throughput and fairness is established considering these factors. A rapid convergence, improved performance algorithm for solving this multi-objective problem is necessary to adapt to a dynamic network environment. Therefore, an improved decomposition-based multi-objective cuckoo search (MOICS/D) algorithm is proposed. This algorithm integrates a decomposition-based multi-objective optimization framework and an improved CS algorithm. The multi-objective problem is decomposed into multiple scalar sub-problems with different weight coefficients, and the cuckoo algorithm with adaptive steps is used to optimize these sub-problems simultaneously. Simulation results show that the MOICS/D algorithm has faster and more stable convergence than the MOEA/D and NSGA-II algorithms and can improve the throughput and fairness of the network.