Fc fusion proteins are used as therapeutic agents with unique structures by combining the Fc domain of an antibody with other active proteins, cytokines, and enzymes. Peptide Fc-fusion proteins are complex fusion molecules that possess a structure different from that of monoclonal antibodies (mAbs) and are difficult to express, thereby affecting their quality. Many product/process-related impurities generated during the production of peptide Fc-fusion proteins pose a risk to the robustness of pre-existing three-column platforms for the purification of mAbs. Thus, we first evaluated the effect of pH, conductivity, and dynamic binding capacity (DBC; g of product per liter of resin) on the separation of host cell protein (HCP) and high molecular weight (HMW) and low molecular weight (LMW) proteins in strong cation exchange chromatography and then established an operating range using the design of experiments (DoE). Based on our studies, the optimal removal rates of HCP and HMW were achieved under the following conditions: 8 CV of wash buffer, 20–23 g/L of resin DBC, and an elution buffer conductivity of 63–66 mS/cm. The conductivity of the wash buffer used to remove the LMW was 50 mS/cm. In addition, reproducibility was confirmed by scaling up two batches using the Fractogel® EMD SO3− (M) resin. As a result of confirming with a validated test method in all batches, >55% yield, >98.2% purity, and >27% HCP reduction rate were satisfied. The cation exchanger exhibited an acceptable step yield and effectively reduced product/process-related impurities within the established range.