Nanotechnology is an emerging interdisciplinary technology and nanostructures capable of enhancing the physical properties of conventional textiles in areas such as antimicrobial properties, water repellence, soil resistance, antistatic, anti-infrared and flame-retardant properties, dye ability, color fastness, and strength of textile materials. The studies were carried out in order to fine tune the preparation of zinc oxide nanoparticles (NPs) for special applications. Soluble starch (stabilizing agent), zinc nitrate and sodium hydroxide (precursors) were used for the preparation of zinc oxide NPs by wet chemical method. The synthesized NPs were coated on cotton fabric (plain weave), and the antibacterial property of the treated fabric was analyzed. Fourier transform infrared spectroscopic analysis, scanning electron microscopy, and physical and chemical characterization were employed to determine the phase and morphology of the final nanoparticle-coated fabric. The results indicated that 2% zinc oxide nanoparticle (200 nm) -coated fabric have high antibacterial efficiency (99.9% against Staphylococcus aureus and 80% against Escherichia coli) and upon washing the coated fabric (five hand washes), the antibacterial activity was found to be 98% against S. aureus and 75% against Escherichia coli.