Road dust is a sink and source of metals and metalloids of human health concern. To date, many studies have examined the composition of road dust but there remain critical knowledge gaps on the chemistry of thoracic fractions (< 10 μm) and their patterns of deposition and resuspension. The goal of this study is to characterize the elemental concentrations and sources of thoracic fractions of road dust and their resuspension potential for Toronto, Ontario, Canada. Bulk and thoracic road sweepings were acid digested (HF, HClO4, HNO3 and HCl) and the elemental concentrations measured using ICP-MS. Principal component analysis (PCA) was applied to infer source emissions. Annual elemental loadings to roads were estimated using data on total sweepings collected by the City of Toronto. The mass amounts of metals and metalloids (< 10 μm) available for resuspension were calculated assuming a contribution of 10% to total loadings for this fraction.The median trace element concentrations in city sweepings (n = 64) ranged from highest to lowest as follows: Mn > Zn > Ba > Cr > Cu > Pb > V > Ni > Sn > Mo > Co > As > Sb > Cd. Iron, Cr, Ni, Co, Mo and Cu levels were significantly associated with road class, with the highest concentrations measured for the expressway. Most elements, especially Sb and Zn, were enriched in thoracic sweepings. The PCA results demonstrate the importance of non-fossil fuel, traffic-related elemental emissions. Difficulties in identifying sources, given uncertainties regarding overlapping chemical profiles, are also highlighted. Significant elemental loadings to roads were estimated to occur, with the largest amounts identified for Fe, Al, Mn, Zn, Cr and Cu. Road dust resuspension is predicted to be the most important source of emissions for Fe, Al, Mn, Cr, V, Sn, Mo, Co and Sb.