Abstract

The deposited dose in the human respiratory tract and its influencing factors were investigated for 8 urban/suburban locations within Greek cities. A dosimetry model (ExDoM2) was implemented assuming a 24-h exposure scenario to ambient PM10 whereby regional deposition rates were obtained. Simulations were performed considering three cases (Sahara dust, cold, and warm periods) with seasonal and diurnal variations examining the relative sources and other influencing factors in each case. Health risk indexes such as the relative risk and attributable fraction were also estimated. Overall, higher daily deposited dose was obtained for all urban compared with suburban locations (p < 0.05) and for cold compared with the warm periods (252-820 μg for cold period and 300-686 μg for warm period) for all locations. This finding was associated with increased deposition rate on cold period during evening/night hours, as a result of significant heating emissions. Besides that, most of the urban locations showed relative comparable deposition rates during the day, compared with the daily mean, for the two periods (cold and warm), indicating that urban-associated sources such as exhaust emissions and road dust resuspension contribute similarly to the deposited dose irrespectively of the season. Finally, the highest deposited dose was obtained during Sahara dust events ranged from 1881 to 4648 μg.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.