The widespread popularity of pasta has driven innovations in formulations and production technologies to enhance its versatility. Techniques such as alternative drying methods and fortification of wheat pasta seek to improve the nutritional value and functional properties of pasta products, thereby increasing their attractiveness to consumers. This study aimed to evaluate the effects of microwave–vacuum drying versus conventional drying on the characteristics of durum wheat semolina pasta, including moisture content, water activity, microstructure, colour, texture, weight gain factor, and cooking loss. Three types of pea protein concentrates (80, 84, and 88% dry matter) were used at levels of 3, 6, and 9% (g/100 g flour). Results indicated that microwave–vacuum drying had a significant impact on the physical properties and cooking quality of pasta. Microwave–vacuum drying caused material puffing, resulting in microstructure with high open porosity (64.1%) and minimal closed porosity (0.1%). This has likely contributed to the short rehydration time (2 min in boiling water) of produced pasta, effectively transforming it into an instant food product. All pasta samples had low water content (<9%) and water activity (<0.4), which ensure food safety. The microwave–vacuum-dried pasta weight gain factor (2.2) was lower than in the conventionally dried pasta (2.8). The firmness of microwave–vacuum-dried pasta was significantly higher (135 g) than that of conventional pasta (16 g). Fortification with pea protein enhanced porosity but did not affect pasta’s culinary parameters, such as weight gain or cooking loss, although it resulted in darker pasta (p = 0.001), especially notable with a 9% pea protein addition.
Read full abstract