Abstract

The rising demand for fiber-rich food products has fuelled the exploration of innovative approaches to enhance their dietary fiber content. Although adding dietary fiber-rich materials into pasta formula can increase the dietary fiber content, this approach counters several technological problems as the cooking and textural properties of the resulting pastas are usually negatively affected. This study is aimed at utilizing sweet corn “milk” residue (SCMR), a food by-product, and transglutaminase to develop fiber-rich pasta. Durum wheat semolina was replaced by SCMR powder at the ratio of 0 (control), 5, 10, 15, and 20% to make SCMR-fortified pasta. The chemical compositions and cooking and textural properties of the fortified pasta were then quantified. As the replacement ratio increased, the dietary fiber content, total phenolic content (TPC), and antioxidant properties of pasta were considerably improved while the cooking and textural attributes were negatively impacted. At 20% SCMR fortification, the dietary fiber content and TPC of the pasta were increased by 3.2 and 1.2 times, respectively, while the cooking loss increased by 73% as compared to those of the control pasta. Meanwhile, the chewiness, cohesiveness, tensile strength, and elongation rate at break of the 20% SCMR-fortified pasta were reduced by 19%, 26%, 21%, and 65%, respectively, compared to those of the control pasta. To improve the cooking properties and the textural properties of the fortified pasta, transglutaminase was added to the pasta dough with 20% SCMR. The effect of transglutaminase was enzyme-dose dependent. The cooking and textural qualities of pasta were improved as enzyme concentration increased 0 to 0.75 U/g protein and declined as the enzyme concentration increased from 0.75 to 1.25 g/U protein. At the optimal concentration of transglutaminase (0.75 U/g protein), the cooking loss reduced by 16% while the chewiness, cohesiveness, tensile strength, and elongation rate increased by 18%, 11%, 31%, and 32% compared to those without transglutaminase. Novelty Impact Statement. This study focuses on developing the dietary fiber-enriched pasta using sweet corn “milk” residue and transglutaminase enzyme. The results showed that replacing 20% durum wheat semolina with SCMR powder significantly enhanced the dietary fiber and total phenolic content of the pasta but negatively affect the cooking and textural properties of the pasta. Adding transglutaminase at 0.75 U/g protein to the SCMR-semolina blended dough successfully restored the adverse effects of SCMR on the cooking and textural properties. This study showed that dietary fiber-enriched pasta with improved cooking and textural properties can be prepared using the combination of SCMR and transglutaminase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.