Experimental studies of chronic noise exposure in modern urban life testified about oxidative stress due to the corresponding hormones effects leading to accumulation of reactive oxygen species and endothelial dysfunction. This study aims to evaluate the protective effect of α2-adrenoblockers to modulate oxidative stress and corticosterone levels due to chronic noise exposure. To achieve this, we examined the effects of beditin (2-aminothiozolyl-1,4-benzodioxane) and mesedin (2-(2-methyl-amino-thiozolyl)-1,4-benzodioxane hydrochloride), along with changes in corticosterone, Ca2 + content, and morphological alterations in various tissues under noise-induced stress. Beyond this, detection of immune-reactivity and proliferation of Galarmin-containing cells in adrenals, and isolation of the total fractions of superoxide-producing associate from the rat liver under noise exposure and the beditin and mesedin actions on them were pertinent. Experiments were provided on the albino female rats divided into four groups: (1) control, (2) noise-exposed, (3) noise-exposed and beditin-injected (2mg/kg, i.p.), and (4) noise-exposed and mesedin-injected (10mg/kg, i.p.) animals. The noise exposure was of 91 dBA noise on 60days with a daily duration of 8h. For the first time, the total fractions of superoxide-containing associates were separated from the cell membranes of the rat liver tissue under the chronic noise stress conditions and the regulative effects of the α2-adrenoblockers. Increased 45Ca2+ and decreased corticosterone levels in the mentioned tissues, as well as dystrophic changes, were observed under the chronic noise exposure. Prominently, α2-adrenoblockers showed antioxidant effects, modulating pathological shifts of the noise-induced stress.
Read full abstract