Concrete curing is a critical factor influencing its mechanical properties and durability. Traditional curing methods, such as water curing and plastic film curing, have significant limitations, including high water consumption and environmental pollution. This study introduces Microbial Induced Carbonate Precipitation (MICP) as an innovative, environmentally friendly curing method for ready-mixed concrete, addressing the urgent need for sustainable construction practices. The feasibility of MICP surface curing is investigated through comprehensive mechanical and durability tests, coupled with microscopic analyses to understand the underlying mechanisms. The results demonstrate that MICP curing substantially enhances concrete performance. Compared to traditional water curing, the samples cured using MICP have increased compressive strength and splitting tensile strength by up to 31.69% and 24.66%, respectively. Additionally, MICP surface curing significantly reduced capillary water absorption, electric flux, and chloride ion migration coefficient by 12.83%, 15.50%, and 17.36%, respectively. It is found that the optimal concentration of Ca2+ in the MICP solution initially improves concrete performance, which then diminishes at higher concentrations due to bacterial activity inhibition. Spraying the MICP solution at appropriate intervals and increasing the number of treatments further improved concrete properties by ensuring a more extensive and dense deposition of CaCO3. Microscopic analyses, including XRD, TG, and SEM-EDS, revealed that MICP surface curing leads to the formation of vaterite and calcite, which densely cover and fill microscopic cracks and pores, ensuring adequate hydration and simultaneously enhancing the concrete's mechanical and durability properties. This study concludes that MICP surface curing provides superior performance than traditional methods and offers a more sustainable and environmentally friendly curing method.