This article explores a novel operation of a monomial ideal, termed duplication, which produces a monomial ideal I⋄\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$I^\\diamond $$\\end{document} from another I. This operation is inspired by and generalizes how vertex duplication affects the edge ideal of a graph. The main result describes a multigraded minimal free resolution of I⋄\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$I^\\diamond $$\\end{document} as long as we know a resolution for I. Consequently, we obtain formulas for the projective dimension and depth of I⋄\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$I^\\diamond $$\\end{document} in terms of the corresponding invariants of I.