Abstract
Large-scale networks have become ubiquitous elements of our society. Modern social networks, supported by communication and travel technology, have grown in size and complexity to unprecedented scales. Computer networks, such as the Internet, have a fundamental impact on commerce, politics and culture. The study of networks is also central in biology, chemistry and other natural sciences. Unifying aspects of these networks are a small maximum degree and a small diameter, which are also shared by many network models, such as small-world networks. Graph theoretical methodologies can be instrumental in the challenging task of predicting, constructing and studying the properties of large-scale networks. This task is now necessitated by the vulnerability of large networks to phenomena such as cross-continental spread of disease and botnets (networks of malware). In this article, we produce the new largest known networks of maximum degree 17 ≤ Δ ≤ 20 and diameter 2 ≤ D ≤ 10, using a wide range of techniques and concepts, such as graph compounding, vertex duplication, Kronecker product, polarity graphs and voltage graphs. In this way, we provide new benchmarks for networks with given maximum degree and diameter, and a complete overview of state-of-the-art methodology that can be used to construct such networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.