Abstract
AbstractA proper vertex coloring of a graph G = (V,E) is acyclic if G contains no bicolored cycle. A graph G is L-list colorable if for a given list assignment L = {L(v) : v ∈ V}, there exists a proper coloring c of G such that c(v) ∈ L(v) for all v ∈ V. If G is L-list colorable for every list assignment with |L(v)| ≥ k for all v ∈ V, then G is said k-choosable. A graph is said to be acyclically k-choosable if the coloring obtained is acyclic. In this paper, we study the acyclic choosability of graphs with small maximum degree. In 1979, Burstein proved that every graph with maximum degree 4 admits a proper acyclic coloring using 5 colors [Bur79]. We give a simple proof that (a) every graph with maximum degree Δ = 3 is acyclically 4-choosable and we prove that (b) every graph with maximum degree Δ = 4 is acyclically 5-choosable. The proof of (b) uses a backtracking greedy algorithm and Burstein’s theorem.KeywordsPlanar GraphGreedy AlgorithmMaximum DegreeChromatic NumberDistinct ColorThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have