Abstract Many savannas are experiencing increased cover of trees and shrubs, resulting in reduced herbaceous productivity, shifts in savanna functional structure and potential reductions in ecotourism. Clearing woody plants has been suggested as an effective management strategy to mitigate these effects and restore these systems to an open state with higher rates of grass production and herbivory. This study investigated the effectiveness of repeated shrub clearing as a tool to mitigate bush encroachment in a semi‐arid savanna in southern Africa. We present data from a 7‐year experiment in the Mthimkhulu Game Reserve bordering Kruger National Park, South Africa. Colophospermum mopane stems and resprouting shoots were basally cut 2–3 times per year (2015–2022) in three pairs of treatment and control plots of 60 × 60 m. We monitored changes in soil moisture, grass biomass and herbivore activity via dung counts. We assessed C. mopane physiological responses to repeated cutting using non‐structural carbohydrates and stable water isotopes to infer changes to energy storage and functional rooting depth, respectively. The cleared treatment had higher soil moisture and grass biomass than the control treatment. Dung counts showed impala and buffalo visited the cleared treatment more frequently than the control treatment. Repeated cutting had limited effects on C. mopane survival in the first 2–3 years after initial clearing, but 80% of individuals were dead after 7 years. Repeatedly cut C. mopane had lower belowground starch concentrations and used water from shallower soil depths than C. mopane in control plots. Synthesis and applications. Repeated cutting increased soil moisture availability and grass biomass, and attracted charismatic grazing herbivores. While more costly than once‐off clearing methods, this practice created more employment opportunities for a neighbouring rural community. Transforming portions of the ecosystem to a grass‐dominated state may increase ecotourism potential through improved game viewing in open systems.
Read full abstract