There is a strong interest in monitoring copper in environmental waters, but its direct analysis suffers from strong matrix interferences. This is why, a sample pretreatment based on solid-phase extraction (SPE) is often used but conventional sorbents usually lack specificity. It is overcome with ion-imprinted polymers (IIPs). This work evaluates for the first time the use of the dummy approach for the synthesis of Cu(II)-targeting IIPs. Two analog ions Ni(II) and Zn(II) were tested as templates and the resulting IIPs were packed in SPE cartridges. The SPE procedure was designed by optimizing a washing step following the sample percolation, to eliminate the interfering ions retained on the IIP by non-specific interactions. To optimize the washing step, solutions at different pH or containing tris(hydroxymethyl)aminomethane as a complexing agent at different concentrations were tested and combined. Zn-IIP appeared more promising than Ni-IIP, showing excellent specificity and a high selectivity. Its retention capacity was determined to be 100µg/g, and different isotherm models were evaluated to fit with the adsorption data. Finally, applications to mineral and sea waters were successfully completed and led to high and repeatable extraction recoveries for Cu(II) (88±1% and 83±3%, respectively).
Read full abstract