How resin-based material and a light-activation protocol influence the mechanical properties of materials used to cement glass fiber post-and-cores in endodontically treated teeth is unclear. The purpose of this in vitro study was to evaluate the influence of immediate or 5-minute delayed light activation on the mechanical properties of dual-polymerizing resin cements and dual-polymerizing resin-core materials compared with bulk-fill composite resins. Nine resin-based materials were tested: 4 dual-polymerizing resin-core materials, (Allcem Core; FGM, LuxaCore Z; DMG, Rebilda DC; VOCO, and (Clearfil DC Core Plus; KURARAY), 3 dual-polymerizing resin cements, (RelyX Universal; 3M ESPE, RelyX U200; 3M ESPE, and Allcem Dual; FGM), and 2 bulk-fill composite resins, (Opus Bulk Fill APS; FGM, and Filtek One Bulk Fill; 3M ESPE). The dual-polymerizing materials were light activated using both protocols. The postgel shrinkage (Shr), flexural strength (FS), elastic modulus (E), Knoop hardness (KH), degree of conversion (DC), and depth of polymerization (DoP) were measured (n=10). The data for Shr, FS, E, and DoP were analyzed using 2-way ANOVA, and for KH and DC using 2-way repeated measurement ANOVA and the Tukey HSD test (α=.05). A 5-minute delay before light-activation significantly reduced Shr for all materials (P<.001). Increasing the depth significantly reduced the KH for all materials (P<.001). Bulk-fill composite resins and dual-polymerizing resin-core had higher KH values than dual-polymerizing resin cements (P<.001). Delayed 5-minute light-activation reduced postgel shrinkage and had no negative effect on mechanical properties. Dual-polymerizing resin-core materials exhibited higher KH values than dual-polymerizing resin cement and mechanical properties similar to those of bulk-fill composite resin.
Read full abstract