The survival rate of lung cancer is low due to the high frequency of drug resistance in patients with mutations in the driver genes. Overexpression of anti-apoptotic genes is one of the most prominent features of tumor drug resistance. EGFR signaling induces the expression of anti-apoptotic genes. Also, microRNAs (miRNAs) have a critical role in regulating biological functions such as apoptosis; a process mostly eluded in cancer progression. The mutation screening was performed on one thousand non-small cell lung carcinoma patients to enroll clinical samples in this study. Bioinformatics analysis predicted that miRNAs (miR-29a, miR-143) might regulate MCL-1 and cIAP-2 expression. We investigated the expression of MCL-1, cIAP-2, miR-29a, and miR-143 encoding genes in adenocarcinoma patients with or without EGFR mutations before treatment. The potential role of miR-29a and miR-143 on gene expression was evaluated by overexpression and luciferase assays in HEK-293T cells. EGFR mutations were found in 262 patients (26.2%) with a greater incidence in females (36.23% vs. 20.37%, P = 0.001). The expression levels of MCL-1 and cIAP-2 genes in patients with mutated EGFR were higher than those of wild-type EGFR. In contrast, compared to those of patients with wild-type EGFR, the expression levels of miR-29a and miR-143 were lower in the patients carrying EGFR mutations. In cell culture, overexpression of miR-29a and miR-143 significantly downregulated the expression of MCL-1 and cIAP-2. Dual-luciferase reporter experiments confirmed that miR-29a and miR-143 target MCL-1 and cIAP-2 mRNAs, respectively. Our results suggest that upregulation of EGFR signaling in lung cancer cells may increase anti-apoptotic MCL-1 and cIAP-2 gene expression, possibly through downregulation of miR-29a-3p and miR-143-3p.