The development of flexible wearable multifunctional electronics has gained great attention in the field of human motion monitoring. However, developing mechanically tough, highly stretchable, and recyclable composite conductive materials for application in multifunctional sensors remained great challenges. In this work, a mechanically tough, highly stretchable, and recyclable composite conductive elastomer with the dynamic physical-chemical dual-crosslinking network was fabricated by the combination of multiple hydrogen bonds and dynamic ester bonds. To prepare the proposed composite elastomers, the polyaniline-modified carboxylate cellulose nanocrystals (C-CNC@PANI) were used as both conductive filler to yield high conductivity of 15.08 mS/m, and mechanical reinforcement to construct the dynamic dual-crosslinking network with epoxidized natural rubber latex to realize the high mechanical strength (8.65 MPa) and toughness (29.57 MJ/m3). Meanwhile, the construction of dynamic dual-crosslinking network endowed the elastomer with satisfactory recyclability. Based on these features, the composite conductive elastomers were used as strain sensors, and electrode material for assembling flexible and recyclable self-powered sensors for monitoring human motions. Importantly, the composite conductive elastomers maintained reliable sensing and energy harvesting performance even after multiple recycling process. This study provides a new strategy for the preparation of recyclable, mechanically tough composite conductive materials for wearable sensors.