In this paper, we focus on the algebraic structure of left negacyclic codes of length [Formula: see text] over the finite non-commutative chain ring [Formula: see text] where [Formula: see text] is an automorphism on [Formula: see text]. After that, the number of codewords of all left negacyclic codes is obtained. For each left negacyclic code, we also obtain the structure of its right dual code. In the remaining result, the number of distinct left negacyclic codes is given. Finally, a one-to-one correspondence between left negacyclic and left [Formula: see text]-constacyclic codes of length [Formula: see text] over [Formula: see text] is constructed via ring isomorphism, which carries over the results regarding left negacyclic codes corresponding to left [Formula: see text]-constacyclic codes of length [Formula: see text] over [Formula: see text] where [Formula: see text] is a nonzero element of the field [Formula: see text] such that [Formula: see text].