The Internet of Things (IoT) is composed of smart devices connected to a network that can send and receive large amounts of data with other devices, generating a lot of data for processing and analysis. Due to the fact that every transaction in blockchain is recorded, placed in a data block, and added to an immutable and secure data chain, blockchain is becoming one of the most promising solutions for enhancing IoT security issues. As more devices become intelligent, the scale of IoT systems, including residential IoT and industrial IoT, is on the rise. Consequently, the issue of resource consumption, stemming from the escalating system communication overhead, is becoming more pronounced. In order to improve the efficiency of the consensus process for residential IoT and reduce the overhead caused by the consensus process, this paper proposes a hierarchical PBFT consensus algorithm With Dual Blockchain for IoT (DBPBFT). Compared to industrial IoT, DBPBFT is more suitable for residential IoT with small scope and clear data classification. DBPBFT separates the responsibilities of dual chains, improving system scalability while also enhancing blockchain security. A chain is divided into several small groups, each responsible for a type of data, reducing system overhead and communication overhead. To avoid unnecessary view-change as much as possible, before consensus begins, each group will select the current view primary node based on reputation values. The simulation results show that the DBPBFT algorithm is superior to traditional algorithms. In terms of reducing communication overhead, compared with EPBFT and DPNPBFT, DBPBFT has increased by 73.8% and 53.1%, respectively. In terms of consensus efficiency, DBPBFT has improved by 34% compared to DPNPBFT.
Read full abstract