Metallic (chromium) coating has often been applied on the surface of polymeric components, mainly to improve their appearance with a metallic luster and to protect from degradation under UV and visible light. However, the toxic nature of hexavalent chromium and delamination problems are an increasing concern in the plating industry. A similar metallic luster and the UV–visible light protection can be achieved by treating the surface of polymers by ion beams. However, a degradation by weathering including cracks, loss of glossiness, blistering, and eventual delamination have been problematic for ion beam processed polymers, particularly with a single ion beam irradiation. The main cause of adhesion failure is the abrupt change in material properties at the interface between coating and polymer or ion beam treated surface and the underlying untreated bulk polymer. In this work, therefore, a method is developed that improves adhesion by producing a graded interface by employing a dual ion beam processing. For demonstration purposes in this work, polycarbonate/acrylonitrile butadiene styrene blends were irradiated first with nitrogen ions followed by helium ions, achieving the desired metallic luster with improved adhesion. The experimental findings are explained in light of the stopping range of ions in materials and their interaction mechanisms with polymeric materials.