Due to the global growth in popularity of Fifth Generation (5G) cellular communications, the demand for shielding against it has risen for a variety of applications, mainly related to cybersecurity but also to isolation, calm areas and so on. This research paper aims to provide a suitable dual-band fractal FSS (Frequency Selective Surface) for the 5G lower band frequencies: 750 MHz and 3.5 GHz. The unit cell is in the shape of a bow tie, where each of the triangular parts are Sierpiński triangles. One major addition to the unit cell is a central metal strip to make the manufacturing of the FSS more feasible and to tune the operation frequencies and bandwidths. As with each different stage of a fractal antenna, the different stages of the fractal FSS design behave differently. For this application, stage 2 is sufficient, as we are able to cover frequency bands among those included in the FR1 5G spectrum. Some equations were derived using linear regression in order to provide specific design tools for building an FSS. These equations have high accuracy and can be used to adapt the proposed design to other frequencies. Some other parameters, which are not represented in the aforementioned equations, can also be adjusted for minor tweaking of the final design. This design performs well except under large incidence angles. This should be taken into account when proposing the installation of a structure based on it. A good agreement between simulation and measurement results is observed.
Read full abstract