ABSTRACTEntrained flow drying is an important fast drying tool in tobacco industry. This study used a drop tube reactor (DTR) as an entrained flow dryer to investigate drying process of flue-cured cut tobacco. Lab-scale cold and hot DTRs were set up to obtain drying kinetics for three types of cut tobacco using different drying gases and temperatures. The effective diffusion coefficients of cut tobacco in DTRs were compared with those in a general cylinder dryer. Moreover, the effects of different drying gases and temperatures on petroleum ether extract content were investigated. The results showed that the effective diffusion coefficients of cut tobacco in the DTRs were between 2.296 × 10−8 and 8–6.244 × 10−8 m2/s, which are two orders of magnitude higher than those in the cylinder dryer. Compared to hot air as a drying medium, superheated steam improved the effective diffusion coefficient of cut tobacco. The petroleum ether tobacco extract had a higher retention ratio when the superheated steam was used in the DTRs. An increase in the drying temperature resulted in a lower retention of the petroleum ether tobacco extract.
Read full abstract